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Received 20 October 2000

Abstract. A new numerical method is used to study the ground-state properties of the spinless Falicov-
Kimball model in one and two dimensions. The resultant solutions are used to examine the phase diagram
of the model as well as possibilities for valence and metal-insulator transitions. In one dimension a com-
prehensive phase diagram of the model is presented. On the base of this phase diagram, the complete
picture of valence and metal-insulator transitions is discussed. In two dimensions the structure of ground-
state configurations is described for intermediate interactions between f and d electrons. In this region the
phase separation and metal-insulator transitions are found at low f-electron concentrations. It is shown
that valence transitions exhibit a staircase structure.

PACS. 75.10.Lp Band and itinerant models – 71.27.+a Strongly correlated electron systems; heavy
fermions – 71.28.+d Narrow-band systems; intermediate-valence solids – 71.30.+h Metal-insulator tran-
sitions and other electronic transitions

1 Introduction

Valence and metal-insulator transitions are some of the
most widely studied manifestations of cooperative phe-
nomena in solids. These transitions are observed in a wide
group of substances formed by transition-metal oxides as
well as rare-earth sulfides and borides, when some exter-
nal parameters (like pressure or temperature) are varied.
They are in many cases first-order phase transitions, how-
ever, second-order transitions, ranging from very gradual
to rather steep, are also observed [1].

To describe all such transitions in a unified picture,
Falicov and Kimball [2] introduced a simple model in
which only two relevant single-electron states are taken
into account: extended Bloch waves and a set of local-
ized states centered at the sites of the metallic ions in the
crystal. It is assumed that insulator-metal transitions re-
sult from a change in the occupation numbers of these two
sets of different electronic states, which remain themselves
basically unchanged in their character. The Hamiltonian
of the model can be written as the sum of three terms:

H =
∑
ij

tijd
+
i dj + U

∑
i

f+
i fid

+
i di +Ef

∑
i

f+
i fi, (1)

where f+
i , fi are the creation and annihilation operators

for an electron in the localized state at lattice site i with
binding energy Ef and d+

i , di are the creation and anni-
hilation operators of the itinerant spinless electrons in the
d-band Wannier state at site i.
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The first term of (1) is the kinetic energy correspond-
ing to quantum-mechanical hopping of the itinerant d elec-
trons between sites i and j. These intersite hopping tran-
sitions are described by the matrix elements tij , which
are −t if i and j are the nearest neighbors and zero
otherwise (in the following all parameters are measured
in units of t). The second term represents the on-site
Coulomb interaction between the d-band electrons with
density nd = Nd/L = 1

L

∑
i d

+
i di and the localized f elec-

trons with density nf = Nf/L = 1
L

∑
i f

+
i fi, where L is

the number of lattice sites. The third term stands for the
localized f electrons whose sharp energy level is Ef .

Since in this spinless version of the Falicov-Kimball
model without hybridization the f -electron occupation
number f+

i fi of each site i commutes with the Hamil-
tonian (1), the f -electron occupation number is a good
quantum number, taking only two values: wi = 1 or 0,
according to whether or not the site i is occupied by the
localized f electron.

Now the Hamiltonian (1) can be written as

H =
∑
ij

hijd
+
i dj +Ef

∑
i

wi, (2)

where hij(w) = tij + Uwiδij .
Thus for a given f -electron configuration w =

{w1, w2 . . . wL} defined on the one or two-dimensional lat-
tice with periodic boundary conditions, the Hamiltonian
(2) is the second-quantized version of the single-particle
Hamiltonian h(w) = T + UW , so the investigation of the
model (2) is reduced to the investigation of the spectrum
of h for different configurations of f electrons.
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In spite of the fact that the Falicov-Kimball model is
one of the simplest examples of interacting fermionic sys-
tem, the theoretical picture of valence and insulator-metal
transitions remains uncertain in the framework of this
model. Even, in the existing literature on this model, dif-
ferent answers can be found on the fundamental question
as to whether the Falicov-Kimball model can describe both
the discontinuous and continuous changes of the f (d)-
electron occupation number nf (nd) as a function of the
f -level energy Ef [3]. It should be noted that this question
is indeed crucial for the systems mentioned above, since,
supposing [1] that the external pressure shifts the energy
level Ef , the valence changes observed in some rare-earth
and transition-metal compounds (SmS, SmB6, Ti2O3, and
so on) could be understandable purely electronic. Unfortu-
nately, it was found that valence and insulator-metal tran-
sitions are very sensitive to the approximations used. Var-
ious approximations [3] (mean-field, virtual crystal, CPA,
etc.) yield very different and often controversial results.
This indicates that the study of valence and insulator-
metal transitions may be successful only with methods
which are relatively insensitive to the type of approxima-
tion used and, of course, with exact methods.

In our previous papers [4,5] we have showed that
the method of extrapolation of small-cluster exact-
diagonalization calculations can be very effective in de-
scribing the ground-state properties of the model, at least
in some regions of the parameter space. Indeed, we have
found that finite-size effects are practically negligible in
the strong coupling limit and thus results obtained on rel-
atively small clusters (L < 30) can be satisfactory ex-
trapolated to the thermodynamics limit (L → ∞). Us-
ing this method, the strong coupling phase diagram was
described successfully, as well as the picture of valence
and metal-insulator transitions in the 1d spinless Falicov-
Kimball model [4]. It was found that for sufficiently large
U the spinless Falicov-Kimball model undergoes only a
few discrete intermediate-valence transitions. Thus, in the
pressure-induced case, it can describe both the valence
transitions from an integer-valence ground state (nf = 0
or 1) into an inhomogeneous intermediate-valence ground
state (nf 6= 0, 1) and the transitions from one inhomo-
geneous intermediate-valence state with nf into another
inhomogeneous intermediate-valence state with n′f 6= nf .

However, the situation is more complicated for small
and intermediate values of U since the finite-size effects
are large in these regions for the clusters that can be
studied using exact diagonalizations (L < 30). To ob-
tain trustworthy results on the exact ground state of the
Falicov-Kimball model in the weak coupling limit, one
must examine much larger clusters (L ∼ 100). Unfortu-
nately, the clusters with L > 30 are beyond the reach of
present day computers within exact diagonalizations and
thus the only way is to compute the ground-state proper-
ties of the model by an approximate but well controlled
method. Here we present one simple method based on a
modification of the exact-diagonalization procedure used
in our previous papers. First, we test this method for the
case of the one-dimensional Falicov-Kimball model, and as

a new result a comprehensive phase diagram of this model
is presented. Then the method is used to study the ground
states of the two dimensional Falicov-Kimball model which
is still an open problem. (For a review on rigorous results
concerning ground states of the two-dimensional Falicov-
Kimball model see Ref. [6].) Our motivation for perform-
ing these calculations was to find and describe possible
types of valence and metal-insulator transitions.

2 The method

The method used in this paper for the study of ground-
state properties of the Falicov-Kimball model is a sim-
ple modification of the exact-diagonalization method [4,5]
and consists of the following steps: (i) Chose a trial con-
figuration w = {w1, w2 . . . wL}. (ii) Having w, U and
Ef fixed, find all eigenvalues λk of h(w) = T + UW .
(iii) For a given Nf =

∑
iwi determine the ground-

state energy E(w) =
∑L−Nf
k=1 λk + EfNf of a partic-

ular f -electron configuration w by filling in the lowest
Nd = L−Nf one-electron levels (here we consider only the
case Nf + Nd = L, which is the point of special interest
for valence and metal-insulator transitions, caused by pro-
motion of electrons from localized f orbitals (fn → fn−1)
to the conduction band states). (iv) Generate a new con-
figuration w′ by moving a randomly chosen electron to a
new position which is chosen also at random. (v) Calculate
the ground-state energy E(w′). If E(w′) < E(w) the new
configuration is accepted, otherwise w′ is rejected. Then
the steps (ii)-(v) are repeated until the convergence (for
a given U and Ef ) is reached. Of course, one can move
instead of one electron (in step (iv)) two or more elec-
trons simultaneously. Thereby the convergence of method
is improved. Repeating this procedure for different values
of Ef and U one can immediately study the dependence
of the f -electron occupation number Nf =

∑
iw

min
i on

the f -level position Ef (valence transitions) or the phase
diagram of the model in the Ef -U plane.

To test this method we have firstly studied the one-
dimensional Falicov-Kimball model at half-filling, the
ground state of which is well understood at present for
both strong and weak interactions. In Table 1 we present
results obtained using the numerical method described
above for two representative values of U . In accordance
with exact diagonalization results [4] we have found that
the ground states of the Falicov-Kimball model at the
half-filed band case are the most homogeneous configu-
rations for sufficiently large values of U . It is interesting
that although a relatively small number of iterations has
been used in numerical simulations (typically 10 000 per
site) the method was able to reproduce exactly the ground
states for all examined cases. A comparison of numerically
calculated results and those obtained using the exact di-
agonalization [5] is presented in Table 1, for U = 0.6.
This shows that our method also reproduces exactly the
ground states in the weak coupling region. This indicates
that the method described above could be the convenient
method for the study of valence and metal-insulator tran-
sitions since it is sufficiently accurate and sufficiently fast.
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Table 1. The ground-states configurations of the one-dimensional Falicov-Kimball model calculated using the approximate
method for L = 30 and two different values of U .

Nf U = 0.6 U = 8

2 110000000000000000000000000000 100000000000000100000000000000

3 110000000100000000000000000000 100000000010000000001000000000

4 110000110000000000000000000000 100000001000000100000001000000

5 110001100001000000000000000000 100000100000100000100000100000

6 100001000010000100001000010000 100001000010000100001000010000

7 100010000100010001000100001000 100010000100010001000100001000

8 100010001001000100010001001000 100010001001000100010001001000

9 100100010010010001001001000100 100100010010010001001001000100

10 100100100100100100100100100100 100100100100100100100100100100

11 100101001001001010010010010100 100101001001001010010010010100

12 100101001010010100101001010010 100101001010010100101001010010

13 101001010100101010100101010010 101001010100101010100101010010

14 101010100101010101010100101010 101010100101010101010100101010

15 101010101010101010101010101010 101010101010101010101010101010

Indeed, while the results presented in Table 1 have been
obtained within a few minutes, the corresponding calcu-
lations within exact diagonalizations (for a full set of f
electron configurations) consumed several hundred hours
of CPU time. Tests performed for a wide range of pa-
rameters of the model showed that clusters consisting of
several hundred sites, are accessible for numerical studies
using this method. For such large clusters the finite-size
effects are considerably reduced, even in the weak cou-
pling limit, and thus this method can be used successfully
in the entire parameter space of the model. In Figure 1
we present the comprehensive phase diagram of the one-
dimensional Falicov-Kimball model obtained using our
method for L = 240. It is seen that our method reproduces
correctly all the main results found by extrapolation of
small-cluster exact-diagonalization calculations [4,5]. The
largest phases in the phase diagram correspond to the pe-
riodic configurations with the smallest periods (p < 9)
and the rational f -electron concentrations. The number
of phases with the relevant width is strongly reduced with
increasing U and thus only a few relevant phases (with
p ≤ 5) form the basic structure of the phase diagram in
the strong coupling limit. A detailed analysis of the model
performed for U = 10 (L = 240 and L = 420) showed that
some of periodic phases with larger periods also persist in
the strong-coupling regime, but their width is consider-
ably smaller. A complete set of the phases (with width
wD > 10−10) that have been determined numerically as
the ground states of the model for U = 10 is shown in
Table 2. The valence transitions between these phases are
discontinuous and of the type insulator-insulator, (there is
a finite gap at the Fermi level for these phases) precisely
as in the exact phase diagram. The phases with the small-
est periods persist also in the weak coupling limit. In the
regions of stability of these phases, the f -electron concen-
tration number nf is constant, while between these phases
nf changes continuously. In the inset we have also dis-
played the region of stability denoting the metallic phase

Fig. 1. The ground-state phase diagram of the one-
dimensional Falicov-Kimball model in the Ef -U plane obtained
for L = 240. All 120 phases corresponding to f-electron densi-
ties between nf = 0 and nf = 1/2 are displayed. The largest
regions of stability correspond to the periodic configurations
with the smallest periods and the rational f-electron densi-
ties: nf = 1/2, 3/7, 3/8, 2/5, 1/3, 1/4, 1/5, 1/6 and nf = 0. The
inset shows the regions of stability for the metallic (M) and
insulating (I) phase for nf > 0.

corresponding to the phase separated configurations (only
one part of the lattice is occupied by f -electrons while
remaining one is free of f -electrons) which has been de-
scribed only very roughly in the previous exact numerical
studies [7]. Since the cluster used in our present study
is sufficiently large, we suppose that the metallic phase
as well as the whole phase diagram are described very
well and thus the picture of valence and metal-insulator
transitions is very close to real one. In the next sec-
tion we present the corresponding picture of valence
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Table 2. A complete set of phases (with width wD > 10−10)
which have been determined numerically as the ground states
of the one-dimensional Falicov-Kimball model for U = 10. The
empty configuration is stable for Ef > 0.19804.

nf wD

1/2 1.8712578 × 10−1

1/3 1.0677360 × 10−2

1/4 2.1048106 × 10−4

2/5 2.1852806 × 10−5

1/5 3.4509125 × 10−6

2/7 1.1864030 × 10−8

3/7 3.7646341 × 10−8

1/6 5.0851783 × 10−8

3/8 1.0913297 × 10−9

1/7 6.9578354 × 10−10

and metal-insulator transitions for the two-dimensional
Falicov-Kimball model.

3 Two-dimensional results

To show the basic structure of the phase diagram and
to reveal the finite-size effects in two dimensions we have
performed first the numerical calculations on small finite
clusters of L = 16 and L = 36 sites. The results of nu-
merical simulations are shown in Figure 2. For L = 16 we
have also displayed the results of exact numerical diago-
nalizations which (see Fig. 2a) coincide with approximate
results over the whole region of U and Ef values. This
confirms that our method also works correctly in two di-
mensions. A direct comparison of one and two dimensional
results shows that there are obvious similarities in the 1d
and 2d phase diagrams. In both cases the largest regions
of stability correspond to the fully occupied (empty) lat-
tice nf = 1 (nf = 0) and the checkerboard configuration
nf = 1/2, with qualitatively the same shapes of phase
boundaries. These phase boundaries are practically inde-
pendent of the system size and thus the basic structure
of the two dimensional phase diagram (corresponding to
nf = 1 and nf = 1/2) can be extrapolated satisfactory to
the thermodynamic limit L → ∞. The remaining struc-
ture of the two dimensional phase diagram is, however,
strongly influenced by finite size effects, especially in the
weak coupling limit. Calculations performed for different
sizes of clusters in the one and two dimensions, showed
that finite-size effects (for U → 0) are much larger for
the 2d case. Obviously this is due to the fact that the
ground states are highly degenerated in two dimensions.
One can partially remove this deficiency by considering
the periodic-antiperiodic boundary conditions (periodic in
x and antiperiodic in y direction) instead of the periodic
boundary conditions (used in our calculations), but un-
like the 1d case, clusters of several hundred of sites are
not sufficient to suppress the finite-size effects in two di-
mensions for U → 0. This is illustrated in Figure 3 where

Fig. 2. The ground-state phase diagram of the two-
dimensional Falicov-Kimball model in the Ef -U plane obtained
for L = 16 (a) and L = 36 (b). All phases with finite regions
of stability are displayed. The largest phases are denoted by
corresponding f-electron numbers. The phase diagram for the
region nf < 1/2 can be determined by reflecting the region
nf > 1/2 in a mirror plane along the Ef = 0 axis and replac-
ing nf by 1− nf .

the one and two dimensional results with different types of
boundary conditions are plotted for L = 400 and U = 0.
In the one-dimensional case the finite-size effects are neg-
ligible for L = 400, but they are still large in two dimen-
sions for both periodic and periodic-antiperiodic boundary
conditions. This indicates that one must consider clusters
consisting of several thousand sites to suppress the finite-
size effects for small U in two dimensions. Unfortunately,
using our method only clusters consisting of several hun-
dred lattice sites (L ∼ 400) can be considered satisfac-
tory, which is insufficient to present the correct results in
the weak coupling limit. For this reason we did not con-
tinue in constructing the comprehensive phase diagram
of the two-dimensional Falicov-Kimball model. Instead of
this we concentrate our efforts to study the model at inter-
mediate U , where it is expected that finite-size effects are
considerably reduced. We do not discuss here the strong
coupling limit of the model, since all ground-state config-
urations are insulating in this region [4] and thus there are
no possibilities for insulator-metal transitions which were
the motivation for our studies. A more complex situation
is expected for intermediate values of U . To show the be-
havior of the two-dimensional Falicov-Kimball model in
this region we have performed an exhaustive study of the
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Fig. 3. Dependence of the f-electron occupation number nf
on the f-level position Ef for the periodic boundary con-
ditions (a) and antiperiodic (periodic-antiperiodic) boundary
conditions (b) in one dimension (two dimensions).

model at U = 2 on several different clusters. The results of
numerical computations are summarized in Figure 4 where
the f -electron density nf is plotted as a function of the f -
level position Ef for L = 64 and L = 144. Again there are
obvious similarities to the one-dimensional case. The va-
lence transitions have again a staircase structure, where
one can easily recognize the primary structure which is
almost independent of L (formed by configurations with
nf = 1/2, 1/4, 1/8), and the secondary structure depend-
ing strongly on L. Also the corresponding configurations
that form the primary structure in the one and two dimen-
sions are similar. In the one-dimensional case the primary
structure is formed by the periodic configurations with the
smallest periods, i.e., {10...10} for nf = 1/2, {100...100}
for nf = 1/3, {1000...1000} for nf = 1/4, etc. The ground-
state configurations that form the primary structure of the
Falicov-Kimball model in two dimensions are displayed in
Figure 5. In accordance with the exact results [8] we have
found that the ground state of the Falicov-Kimball model
at the half-filling band point (nf = 1/2) is the checker-
board configuration. For nf = 1/4 the ground state is
periodic. It can be described as a periodic repetition of
one occupied line (of slope 1/2) followed by three unoc-
cupied lines. For large U this ground state was proved
analytically by perturbation calculations [9]. Our results
show that this type of the ground state persists also for

Fig. 4. Dependence of the f-electron occupation number nf on
the f-level position Ef calculated for U = 2 and two different
clusters (8× 8 and 12× 12).

Fig. 5. The ground-state configurations of the two dimensional
Falicov-Kimball model for U = 2 and two different f-electron
densities: nf = 1/4 and nf = 1/8.

intermediate values of U . For nf = 1/8 a new type of the
ground state configuration was found.

Let us now turn our attention to the problem of metal-
insulator transitions in the two-dimensional Falicov-
Kimball model. In Figure 6 we have displayed the de-
pendence of the energy gap ∆ at the Fermi level on the
f -electron concentration [10]. It is seen that below some
critical value of the f -electron concentration nfc(U) the
energy gap is apparently suppressed and vanishes, proba-
bly discontinuously. Clearly this is demonstrated for larger
values of U (see inset in Fig. 6). Thus we can conclude that
the two-dimensional Falicov-Kimball model exhibits a dis-
continuous metal-insulator transition at nf = nfc(U). In
accordance with the one-dimensional case we suppose that
this transition is the consequence of the phase separation
which takes place for nf < nfc(U). The numerical calcu-
lations performed on 8× 8, 12× 12, and 16× 16 clusters
fully confirmed our conjecture. In Figure 7 we have dis-
played the ground-states configurations found for several
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Fig. 6. Dependence of the energy gap ∆ at the Fermi level
on the f-electron density nf for L = 256 and two different
values of U . Inset: The behavior of ∆ close to the insulator-
metal transition point for several clusters (12×12, 16×16 and
20× 20).

f -electron concentrations less than nfc on 12× 12 cluster
and U = 2. In all cases the ground state is phase sepa-
rated, i.e., f electrons occupy only one part of the lattice,
while that remaining is free of f -electrons. The region of
the phase separation in the nf -U plane is shown in Fig-
ure 8. (Here we have displayed only results for U > 1
since in the opposite limit the finite-size effects are not
negligible.) In comparison to the one-dimensional Falicov-
Kimball model, where the phase separation takes place
only for U < t, the two-dimensional model exhibits phase
separation for values of U more than three times larger
than t. Since the most interesting physics of the Falicov-
Kimball model (the metal-insulator transition, and the
phase separation) is connected with the existence of the
phase separation domain, the fact that this domain per-
sists also for t < U is crucial for application of the model to
rare-earth and transition-metal compounds. In these ma-
terials the values of the interaction constant U are much
larger than the values of hopping integrals ti,j and thus
for the correct description of valence and metal-insulator
transitions in these compounds one has to take the limit
U > t and not U < t.

It should be noted that our numerical study of the
two-dimensional Falicov-Kimball model represents one of
the first attempts to find a complete set of the ground-
state configurations for this model for intermediate inter-
actions. Till now, there existed only a few numerical re-
sults for this region [11]. These results have been obtained
for a restricted class of periodic configurations and thus
they could not describe some of important features of the
model, e.g., the phase separation when the ground-state
configurations are apparently not periodic (see Fig. 7). Fi-
nally, it should be noted that the applicability of our nu-
merical method is much broader. Although we presented

Fig. 7. The ground-state configurations of the two dimen-
sional Falicov-Kimball model for U = 2 and several f-electron
densities nf < nfc.

Fig. 8. The region of phase separation (PS) of the two-
dimensional Falicov-Kimball model calculated for two different
clusters (12× 12 and 16× 16).

here results for one and two dimensions only, the method
can be used directly for in three dimensions, at least for
qualitative studies of the model. The study of relative
models, like the spin-1/2 Falicov-Kimball model is also
available within this method. Work in this direction is
currently in progress.



P. Farkašovský: Ground-state properties of the Falicov-Kimball model in one and two dimensions 215

In summary, a new numerical method was used to
study the ground-state properties of the spinless Falicov-
Kimball model in one and two dimensions. The results
obtained were used to examine the phase diagram of the
model and possibilities for valence and metal-insulator
transitions. In the one dimension a comprehensive phase
diagram as well as the picture of valence and metal-
insulator transitions were described. As a new result we
presented the region of stability for the metallic phase
which was described only very roughly in the previous ex-
act numerical studies. In two dimensions the structure of
the ground-state configurations was described for interme-
diate interactions between f and d electrons. In this region
the phase separation and metal-insulator transitions were
found at low f -electron concentrations. It was shown that
valence transitions exhibit a staircase structure.

This work was supported by the Slovak Grant Agency VEGA
under grant No. 2/7021/20. Numerical results were obtained
using computational resources of the Computing Centre of the
Slovak Academy of Sciences.
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